Mirabolic Satake equivalence and supergroups

نویسندگان

چکیده

We construct a mirabolic analogue of the geometric Satake equivalence. also prove an equivalence that relates representations supergroup with category $GL(N-1,{\mathbb C}[\![t]\!])$-equivariant perverse sheaves on affine Grassmannian $GL_N$. explain how our equivalences fit into more general framework conjectures due to Gaiotto and Ben-Zvi, Sakellaridis Venkatesh.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Geometric Satake Equivalence

Let k be an algebraically closed field and O = k[[t]] ⊂ F = k((t)). For an almost simple algebraic group G we classify central extensions 1 → Gm → E → G(F) → 1, any such extension splits canonically over G(O). Fix a positive integer N and a primitive character ζ : μN (k) → Q ∗ l (under some assumption on the characteristic of k). Consider the category of G(O)biinvariant perverse sheaves on E wi...

متن کامل

The Hecke category (part II—Satake equivalence)

Theorem 1. The convolution ∗ admits a commutativity constraint making Sph into a rigid tensor category. There exists a faithful, exact tensor “fiber” functor Sat : Sph → Vect inducing an equivalence (modulo a sign in the commutativity constraint) of Sph with Rep(G) as tensor categories, where G is the Langlands dual group of the reductive group G, whose weights are the coweights of G and vice v...

متن کامل

On Mirabolic D-modules

Let an algebraic group G act on X, a connected algebraic manifold, with finitely many orbits. For any Harish-Chandra pair (D , G) where D is a sheaf of twisted differential operators on X, we form a left ideal D g ⊂ D generated by the Lie algebra g = LieG. Then, D/D g is a holonomic D-module, and its restriction to a unique Zariski open dense G-orbit in X is a G-equivariant local system. We pro...

متن کامل

Geometric Satake, Springer Correspondence, and Small Representations

For a simply-connected simple algebraic group G over C, we exhibit a subvariety of its affine Grassmannian that is closely related to the nilpotent cone of G, generalizing a well-known fact about GLn. Using this variety, we construct a sheaf-theoretic functor that, when combined with the geometric Satake equivalence and the Springer correspondence, leads to a geometric explanation for a number ...

متن کامل

Kuga-satake Varieties and the Hodge Conjecture

Kuga-Satake varieties are abelian varieties associated to certain weight two Hodge structures, for example the second cohomology group of a K3 surface. We start with an introduction to Hodge structures and we give a detailed account of the construction of Kuga-Satake varieties. The Hodge conjecture is discussed in section 2. An excellent survey of the Hodge conjecture for abelian varieties is [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2021

ISSN: ['0010-437X', '1570-5846']

DOI: https://doi.org/10.1112/s0010437x21007387